3 Parameter Object
The Parameter Object defines model parameter values for use with the Model Object. In estimation tasks, these are typically the initial values for the estimation algorithm, or fixed parameter values within the model.
The Parameter Object should provide a value for each parameter listed in the Model Object STRUCTURAL_PARAMETERS
and VARIABILITY_PARAMETERS
blocks.
STRUCTURAL
and VARIABILITY
parameter blocks are kept separate to allow the user to quickly identify the function of each parameter in the model and to facilitate certain tasks, for example fixing variability parameters for simulation.
3.1 STRUCTURAL
The STRUCTURAL
block defines the numerical values of the structural parameters with optional constraints (low and high values) and whether the value is fixed or to be estimated. Each structural parameter must have the value
argument assigned a numeric value.
For each structural parameter the typical construct will be
<PARAMETER NAME> : { value = <numeric> }
Or, with additional optional attributes
<PARAMETER NAME> : { value = <numeric>, lo = <numeric (lower bound)>,
hi = <numeric (upper bound)>, fix = <true | false> }
This provides a numerical value for a parameter which may be used as an initial estimate for estimation or as a value for simulation. Numerical values may be expressed in scientific notation.
The lo
and hi
attributes are optional and are used to define lower and upper boundaries for estimation.
The fix
attribute is optional. It may be set to a logical value of true or false. The default value of fix
is false. When fix
is true the parameter will not be estimated in an estimation task. Specifying fix = true
overrides any setting of lo
and hi
.
STRUCTURAL {
POP_CL : { value = 0.1, lo = 0.001 }
POP_V : { value = 8, lo = 0.001 }
POP_KA : { value = 0.362, lo = 0.001 }
POP_TLAG : { value=1, lo=0.001 }
BETA_CL_WT : { value = 0.75, fix = true }
BETA_V_WT : { value = 1, fix = true }
RUV_PROP : { value = 0.1, lo = 0 }
RUV_ADD : { value = 0.1, lo = 0 }
} # end STRUCTURAL
3.1.1 Note on parameter values
It is typical to specify log-Normal distributions for parameters, but the user should be aware that in some models, parameters may be negative. As with other languages, the user should be careful to avoid parameterisations that would lead to taking logs of a negative number.
3.2 VARIABILITY
The VARIABILITY
block defines the names and values of random effect parameters (including covariance or correlation parameters) that are to be used in the Model Object. Similar to the STRUCTURAL
block above, the VARIABILITY
block provides initial values for estimation. Each variable must have the value
argument assigned a numeric value.
Similar to the STRUCTURAL
block, the VARIABILITY
block requires attributes for each random effect used in the model.
For each random effect parameter the typical construct is
<PARAMETER NAME> : { value = <numeric> , type is <sd | var> }
With additional fix
attribute
<PARAMETER NAME> : { value = <numeric>, type is <sd | var>, fix = true }
The type
argument specifies whether the initial values and parameter estimation are specified on the standard deviation scale.
Within the Parameter Object VARIABILITY
block, we no longer need to specify the type of variability (variance or sd). The Parameter Object simply defines values for the parameters used in the Model Object block. The user then needs to ensure that the parameter values are on the appropriate scale.
Note: that in the version of PsN used in the current version of the SEE, bootstrap estimates of variability parameters are not available on the standard deviation scale. Returned variability parameters from bootstrap estimation will be on the variance scale.
An example VARIABILITY
block:
VARIABILITY {
PPV_CL : { value = 0.1, type is sd }
PPV_V : { value = 0.1, type is sd }
CORR_CL_V : { value = 0.01 }
PPV_KA : { value = 0.1, type is sd }
PPV_TLAG : { value = 0.1, type is sd, fix=true }
RUV_PROP : { value = 0.1, lo = 0 }
RUV_ADD : { value = 0.1, lo = 0.0001 }
} # end VARIABILITY
Note that parameter estimates for residual errors e.g. RUV_PROP and RUV_ADD above are now specified as VARIABILITY
parameters, and not STRUCTURAL
. Typically, these parameters are defined as multipliers of standard Normal(0,1) random variables in definition of the residual error model. The purpose of the VARIABILITY
block definition in the Parameter Object is to make it easier to identify those parameters associated with variability and if required turn off variability by fixing these parameters to zero. Placing the residual error parameters in the STRUCTURAL
parameter block made this difficult, since these parameters can have arbitrary names. Nevertheless, the models are equivalent whether residual errors are defined by parameters specified in the STRUCTURAL
or in the VARIABILITY
block.
Note also that correlations between parameters are given parameter values in the VARIABILITY
block, but definition of correlation and covariance now occurs in the Model Object RANDOM_VARIABLE_DEFINITION
block.
When defining values for multivariate distributions, the user may need to define vectors and matrices to define the mean and covariance matrix (respectively). To do so the user defines a list with the following syntax:
To define a vector of length k:
<VARIABLE NAME> : {vectorValue = [ <value1>, <value2>, <valuek>] }
The square brackets denote that the result is a vector.
To define a matrix of size n rows by p columns:
<VARIABLE NAME> = [[ <value_1_1>, <value_1_2>, , <value_1_p>;
<value_2_1>, <value_2_2>, , <value_2_p>;
<value_n_1>, <value_n_2>,, <value_n_p>]]
Note the double square brackets to define the matrix type, comma separated values to signify individual elements and semi-colon to specify the end of a row.
Alternatively to create a matrix, it is possible to use functions diagonal, triangle, matrix. These take a vector as input and return a matrix.
For example (UseCase6_2.mdl):
VARIABILITY {
PPV_CL_V_KA : {matrixValue = triangle([0.1,
0.01, 0.1,
0.01, 0.01, 0.1], 3, true)}
} # end VARIABILITY
3.2.1 Parameter naming
Unlike some target software, MDL does not have reserved names for parameters, nor is any meaning extracted from parameter names.
In the MDL documentation, we have used the convention that variability parameters describing the population parameter variability from the combination of between subject and within subject (between occasion) random effects are named PPV_. The individual level random effects we’ve named ETA_ since this is a familiar convention for many analysts. The residual unexplained variability parameters have been named RUV_ and the random variable associated with these has been named EPS_ again to following a familiar convention.
3.2.2 Covariances and Correlations
Random variability parameters and any covariances or correlations are defined separately, rather than as a combined matrix.
The covariance (or correlation) between random effects is defined as follows:
<PARAMETER NAME> : { parameter = <vector of random effect
variables> ,
value = <vector of values>,
type is <cov | corr> }
The random effects variables must be declared in the DECLARED_VARIABLES
block within the Parameter Object so they can be mapped to the random effect variables in the Model Object.
So for a simple example where the between subject variance parameters for CL, V and KA are on the standard deviation scale and the correlation between these parameters is to be specified, the standard deviation - correlation matrix (standard deviation on the diagonal, correlation off diagonal) is given by
\[\begin{bmatrix} PPV\_ CL \\ PPV\_ V \\ PPV\_ KA \\ \end{bmatrix} = \ \begin{bmatrix} sd = \ 0.1 & 0.01 & 0.01 \\ \mathbf{corr = 0.01} & sd = \ 0.1 & 0.01 \\ \mathbf{corr = 0.01} & \mathbf{corr = 0.01} & sd = \ 0.1 \\ \end{bmatrix}\]
And the corresponding MDL code is:
warfarin_PK_CORR_par = parObj {
DECLARED_VARIABLES{ ETA_CL ETA_V ETA_KA}
STRUCTURAL {
} # end STRUCTURAL
VARIABILITY {
PPV_CL : {value=0.1, fix=true, type is sd}
PPV_V : { value = 0.1, type is sd }
PPV_KA : { value = 0.1, type is sd }
PPV_TLAG : { value = 0.1, type is sd, fix=true }
# correlation between CL, V, KA
OMEGA1 : {type is corr, parameter=[ETA_CL, ETA_V, ETA_KA],
value=[0.01, 0.01, 0.01]}
} # end VARIABILITY
} # end of parameter object
In the code above, the variable OMEGA1 is defined as the lower triangle of the matrix above (correlation entries only) and three values are required to define the correlations between the parameters. Specifying the between subject variability parameters separately from covariances and correlations allows the user to change the covariance or correlation structure independently of the other variance parameter definitions.
Note that the parameters correlated are the random effects rather than the parameters defining the distribution of the random effects. Thus it is these random effect variables that are declared in the DECLARED_VARIABLES
block.